
CHAPTER

TWELVE

INDETERMINATE APPLICATIVE SYSTEMS

We have already studied two models that, to some extent, express concurrent

computation through function composition. Data Flow (Chapter 9) describes

concurrency by a process equivalent to the parallel evaluation of function argu-

ments. In Data Flow, a stream of values computed by a primitive is directed to

the inputs of its caller. Input streams can be piped together; parallel streams

can be processed concurrently. Similarly, the Actors model (Chapter 11) adds

concurrency, side e�ects, and weak fairness to the lambda calculus. Sending a

message to an actor resembles calling a function. The primary source of paral-

lelism in Actors is actors that, on receiving one message, send several messages.

This roughly corresponds to functions that evaluate several arguments in a single

call.

In some sense, Data Flow and Actors start with unusual ideas (graphical and

object-oriented computation) and converge toward classical functional systems.

This section discusses Indeterminate Applicative Programming (IAP), a set of

ideas centered on extending classical functional environments (like pure Lisp

and side-e�ect-free Scheme) into distributable systems. IAP has mechanisms

for constructing in�nite objects, indeterminate selection, task generation, and

communication.

156

indeterminate applicative systems 157

(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 : : :

The positive integers.

(2 3 5 7 11 13 17 19 23 29 31 37 41 : : :

The primes.

((1 2 3 4 5 6 7 8 9 10 11 12 13 14 : : :

(2 4 6 8 10 12 14 16 18 20 22 24 26 : : :

(3 6 9 12 15 18 21 24 27 30 33 36 39 : : :

.

.

.

A stream of streams.

(? ? ? 4 ? 6 7 ? 9 10 11 12 ? 14 15 16 : : :

A stream, some of whose elements are unde�ned.

Figure 12-1 Typical streams.

In�nite Objects

Several inventions led to the development of Lisp-based distributable systems.

Clearly, one of the most important was Lisp itself [McCarthy 65]. Another, less

well known contribution was Peter Landin's description of streams [Landin 65].

Streams are possibly in�nite sequences of values. Sequences are a familiar idea in

computer science|for example, linked lists are an implementation of sequences.

Conceptually, a stream is a sequence with no last element. Streams are typically

arguments to functions; those functions act on each element of the stream, pro-

ducing another stream as output. In a Lisp-like system, the constituent values

of a stream can be atomic symbols, �nite lists, or themselves streams. One value

that might occur in a stream is bottom (?), the unde�ned value.* Figure 12-1

shows several typical streams. We use Lisp \parenthesis notation" to show values,

with unbalanced parentheses and ellipses suggesting in�nite streams.

If the arguments to functions are not simply values but streams, then func-

tion composition produces a \graphical" description of computation. For exam-

ple, the functional expression

f(g(x; y); h(y; z))

can be thought of as a three-node network, where x, y, and z are the input

sources and the value produced is the output sink. Figure 12-2 illustrates this

relationship. This view of functional programming is similar to Data Flow.y

* ? (unde�ned) should be thought of as the result of performing a nonterminating compu-

tation such as �nding f(5), when the de�nition of f is f(x)� 1 + f(x+ 1).
y Perhaps the �rst to notice the equivalence of function composition and graphical compu-

tation over in�nite sequences was Gilles Kahn [Kahn 74]. He later extended and ampli�ed this

work with David MacQueen [Kahn 77].

158 models

Figure 12-2 f(g(x; y); h(y; z)).

Any reasonable implementation of in�nite sequences makes certain obvious

choices. For example, the same function should return the �rst element of both

�nite and in�nite sequences. However, there are some obvious di�culties with the

implementation of in�nite objects. For example, given that you are going to have

an in�nite object, where do you store it? The resolution of this problem lies in not

creating \too much" of the in�nite object. More succinctly, the optimal strategy

is to generate the parts of the in�nite object as they are used. This delayed

evaluation requires modifying the underlying programming system. Since Lisp

(like virtually every common programming language except the call-by-name

feature of Algol 60) evaluates a function's arguments before evaluating its body,*

a function whose argument constructs an in�nite object would never terminate.

There are two classes of remedies to this problem. The simpler way (from

a programming standpoint) is to make the evaluation scheme be normal-order

evaluation. Normal-order evaluation evaluates functions from the \outside-in."

It substitutes the (unevaluated) arguments to the function for the corresponding

bound variables in the function body, and then evaluates the function body.

Hence, if a particular function parameter is never used, the corresponding actual

parameter is never evaluated.

The opposite of normal-order evaluation is applicative-order evaluation. In

applicative-order evaluation, the function's arguments are �rst evaluated and

the resulting values are substituted into the body of the function. The body

of the function is then evaluated. Lisp expr's and Scheme use applicative-order

evaluation.

Some expressions terminate when evaluated in normal order, but not in

applicative order. In particular, if the evaluation of an argument to a func-

tion produces an in�nite object, then applicative-order evaluation creates (or

at least tries to create) the entire in�nite object. On the other hand, normal-

* At least expr's in Lisp evaluate their arguments in this way.

indeterminate applicative systems 159

order evaluation builds only as much of the object as the computation uses.*

In�nite data objects always remain �nitely described. However, normal-order

evaluation has its drawbacks. If a parameter's value is accessed several times

during the evaluation of a function's body, then that parameter is reevaluated

each time. A system can waste energy repeatedly evaluating the arguments to

functions.y Jean Vuillemin and Christopher Wadsworth discovered resolutions

of the problem of multiple argument evaluation in normal-order systems in the

early seventies [Vuillemin 74; Wadsworth 71]. We call their idea call-by-need. In

a call-by-need system, evaluation is done in normal order. However, after com-

puting the value of a parameter, the system remembers that value and does not

evaluate that parameter again. Three promising (and similar) approaches have

been suggested for embedding call-by-need in a Lisp-like system: Gilles Kahn

and David MacQueen's \networks of parallel processes" [Kahn 74; Kahn 77]; Pe-

ter Henderson and James Morris's \lazy evaluator" [Henderson 76]; and Daniel

Friedman and David Wise's \suspending cons" [Friedman 76].

Kahn and MacQueen recognized that collections of Lisp-like functions over

streams are networks that perform a Data Flow-like token passing. Making this

token passing demand-driven results in call-by-need. Henderson and Morris mod-

i�ed a Lisp-like interpreter to produce call-by-need. Friedman and Wise found a

simple and direct way to have in�nite objects in Lisp-like systems, suspending

cons.

Suspending Cons

In Lisp, the primary data structure is the list. Lists are constructed with the

dyadic function cons. Letting nil denote the empty list (), the expression (cons

1 nil) evaluates to the list whose only element is 1, that is, (1). Similarly, the

expression

(cons (cons 5 nil) (cons 3 (cons 8 nil)))

evaluates to the list

((5) 3 8)

* The ability of normal-order evaluation to compute some functions that applicative-order

cannot is not limited to in�nite objects; it extends to in�nite computations. For example, if

we de�ne f(x)� f(x + 1) and g(y; z)� if y = 0 then 1 else z, then g(0; f(5)) is de�ned for

normal-order evaluation but not for applicative-order evaluation. Normal-order evaluation of

this expression yields 1.
y In a pure system (one without side e�ects) normal-order evaluation is semantically equiv-

alent to performing call-by-name evaluation and applicative-order evaluation is equivalent to

call-by-value. Wand [Wand 80] presents a good development of the theory of evaluation and

the di�erences between call-by-name and call-by-value.

160 models

We use the traditional Cambridge pre�x notation for describing Lisp func-

tions. In Cambridge pre�x, the function name goes inside the parentheses with

its arguments (conveniently forming a list). Thus, (f x y) represents f(x; y).

Corresponding to function cons there are functions car (�rst) and cdr (rest)

for retrieving the parts of a cons. By de�nition [McCarthy 63]

(car (cons x y)) = x

and

(cdr (cons x y)) = y

Traditionally, cons is implemented by allocating a new storage record (a cell)

for each call to cons. This record has two �elds. A pointer to the �rst argument

(car) of the cons is stored in one �eld and a pointer to the second argument

(cdr) is stored in the other. The basic Lisp implementation recognizes two major

varieties of data objects: cons cells (lists) and atoms (tokens).* The key idea in

suspending cons involves making one small change to a pure (side-e�ect-free) Lisp

system. With suspending cons, the constructor function, cons, does not evaluate

its arguments. Instead, a call to cons builds a cell containing two suspensions.

When a probing function car (or cdr) is called on a cell that contains a suspension,

it forces that suspension to become a manifest (\real") value. That is, car (cdr)

evaluates the �rst (second) argument of the cons that created that cell, in the

environment of the original call to cons. The result of this evaluation is then

stored back into the car (cdr) �eld of the cons cell in place of the suspension. It

is marked as manifest. The next time the car (or cdr) of that cell is desired, the

system recognizes that there is a manifest value in the cell (not a suspension),

and returns it without further computation. According to Friedman and Wise

[Friedman 78a, p. 931]:

A \suspension" is a temporary structure planted within the �eld of a record when it

is created instead of the value which rightfully should be there. It contains information

su�cient to derive that value at any time it is necessary to the course of the computation.

In terms of Lisp, su�cient information is the \form" which speci�es the value of the �eld

and the \environment" which retains all bindings necessary to evaluate that form at any

time in the future.

Cons builds data structures, and data structures are traditionally understood

with diagrams. We diagram cons cells as rectangular blocks, with halves for the

car and cdr �elds. We draw suspensions as \clouds." Therefore, evaluating

* This is just a sketch of a few of the ideas in Lisp. The original Lisp documentation

[McCarthy 65] is still a good source for the theory and practice of Lisp. Many books on Lisp

have been written in the last few years; Allen [Allen 78] describes Lisp for the system builder,

while Winston [Winston 81] provides an introduction to programming in Lisp, particularly for

Arti�cial Intelligence applications.

indeterminate applicative systems 161

Figure 12-3 ((lambda (x y)(cons x y)) (+ 3 4) (cons 7 nil)).

Figure 12-4 After evaluating the cdr.

((lambda (x y)(cons x y)) (+ 3 4) (cons 7 nil))

initially produces the structure illustrated in Figure 12-3. To �nd the cdr of

this structure, we force the cdr-�eld suspension to become a value. This forcing

progresses only as far as the next call to cons. The resulting structure is shown

in Figure 12-4. Using suspending cons, we can easily produce in�nite structures.

It is important that the reader accept the premise that in�nite objects really

exist and can be represented in a �nite computer system. One can treat an in�nite

object just like any other object. However, one must be wary of using in�nite

objects in algorithms that examine the entirety of objects, such as printing or

counting the length of an in�nite list.

In�nite objects are the children of recursion. We can de�ne in�nite objects in

two ways: by functional recursion or by data recursion. Recursive function de�ni-

tion should be familiar to most readers. For example, the traditional (recursive)

de�nition of factorial is

162 models

(factorial n) � (if (= n 0)

1

(� n (factorial (� n 1))))

This is a \good" recursive de�nition in that (for nonnegative integers n) it always

terminates with a well-de�ned answer. With a suspending cons, we can de�ne

function successors as

(successors n) � (cons n (successors (+ n 1)))

This function produces the in�nite list of integers, starting with its argument.

That is, the successors of a number is that number consed onto the list that

is the successors of one more than it. Thus, (successors 4) is the in�nite list

(4 5 6 7 8 9 : : : .

Data recursion [Ashcroft 77] may be unfamiliar. With data recursion we

de�ne an object in terms of itself. The keyword that indicates self-de�nition is

letrec. Thus, the expression

(letrec (suc4 (cons 4 (mapcar add1 suc4)))

<body>)

binds to suc4 the stream of integers starting at 4 in the evaluation of <body>.*

Letrec contrasts with the usual use of self-mention in variable assignment. In

most languages, x := x + 1 means that the value of x is to be increased by one.

With letrec, the equality implies current substitutivity (as in classical mathemat-

ics). That is, the structure being built is used in determining the structure being

built. This is useful only if the building process examines only those parts that

have already been built. Letrec stands for \let, recursively." We use the simple

command let when the de�nition is not recursive.

We illustrate this idea with a program for generating all the primes. Our al-

gorithm is the traditional sieve of Eratosthenes; we repeatedly select the smallest

remaining number and discard its multiples.

(sieve ints) � (cons (car ints)

(sieve (removemults (car ints)

(cdr ints))))

* This example uses functions add1 and mapcar. The expression (add1 x) returns one

more than x. Mapcar takes a function and a list of arguments and builds a list of the results

of applying that function to each element of the given list. Hence, if m is the list (1 4 7 10),

(mapcar add1 m) is the list (2 5 8 11).

indeterminate applicative systems 163

Function removemults takes a number and a list and removes all multiples of its

�rst argument from its second argument.*

(removemults n l) �

(cond ((evenly-divides (car l) n) (removemults n (cdr l)))

(t (cons (car l) (removemults n (cdr l)))))

The object that is the stream of all the primes, in increasing order, is the value

of

(sieve (successors 2))

Most recursive Lisp functions have both a base clause (or clauses) and a

recursive clause (or clauses). Functions that work with in�nite objects usually

have only recursive clauses. That is, such programs do not check to see if the

problem has been reduced to the empty list because it is never reduced to the

empty list. Correspondingly, our sieve and removemults functions only work on

in�nite lists.

Two-three-�ve Dijkstra presents the following example, attributing it to Ham-

ming [Dijkstra 76]: Generate, in increasing order, the sequence of all numbers of

the form 2i �3j �5k, for natural numbers i, j and k. That is, 1, 2, 3, 4, 5, 6, 8, 9, 10,

12, 15, 16, 18, : : : . Dijkstra requests only the �rst 100 elements of the sequence.

With suspending cons, we can create the entire sequence [Friedman 78b].

We de�ne functions scalar-product and join. The expression (scalar-product s

v) is a list of the product of s and each element of v; join merges a pair of sorted

streams into a single, sorted stream.

(scalar-product i m) �

(cons (times i (car m))

(scalar-product i (cdr m)))

(join l m) �

(cond ((< (car l) (car m))

(cons (car l) (join (cdr l) m)))

((> (car l) (car m))

(cons (car m) (join l (cdr m))))

(t (cons (car l) (join (cdr l) (cdr m)))))

* Cond is the Lisp conditional function. The expression (cond (b1 e1) (b2 e2) : : : (bk ek))

is equivalent to the conditional expression if b1 then e1 else if b2 then e2 else : : : if bk then

ek else nil. That is, cond successively evaluates the bi until one is true and then returns the

value of the corresponding ei. Cond treats any value that is not nil as true. In particular, the

atom t evaluates to itself and is conventionally used for true.

164 models

The Hamming sequence is therefore

(letrec (comps (cons 1

(join (scalar-product 2 comps)

(join (scalar-product 3 comps)

(scalar-product 5 comps)))))

comps)

Flip-
op Landin observed that once a system includes in�nite objects, it is

natural to treat a sequential �le as an in�nite object [Landin 65]. Similarly,

we can think of a terminal session as creating an in�nite �le. Each keystroke

adds another element to the terminal stream. This stream has no last element,

though all typing after certain sequences may be ignored. Friedman and Wise

[Friedman 77] pursued this theme by showing how to write a rudimentary editor

as a function of a sequential �le stream and a sequential command stream. Their

editor produced a sequential �le output stream and a stream of responses to the

user. In this section we explore the same idea with respect to hardware.

Modeling some situations requires ensuring that the �rst element of a stream

exists before one attempts to examine the rest of the stream [Landin 65]. For

example, it is unreasonable to expect to be able to access the character after the

next character the user types. For that reason, Friedman and Wise introduce

the primitive strictify [Friedman 79]. Strictify is a function of two arguments. It

evaluates its �rst argument and returns the value of its second.

We usually present an example of a simple, state-possessing object (like a

register) at this place in the discussion of a model. What does a statelike object

look like in a side-e�ect-free system? In this section, we present a model of a

reset/set
ip-
op, adapted from a paper by Johnson [Johnson 84].

A reset/set
ip-
op (RSFF) has two input lines and two output lines. We

label the inputs R (reset) and S (set). Figure 12-5 shows the circuit diagram for

an RSFF. The RSFF retains its state as long as the inputs are both high. A pulse

is a sequence of 0s. A pulse on the S line sets the
ip-
op (makes Qhi=1 and

Qlo=0) and a pulse on the R line resets the
ip-
op (makes Qhi=0 and Qlo=1).

A spike (a single 0) on either line makes the
ip-
op unstable. The program for

the RSFF is as follows:

(NAND l r) � (map2car nand l r)

(nand x y) �

(cond ((= x 0) 1)

((= y 0) 1)

(t 0))

(two list x y) � (cons x (cons y nil))

indeterminate applicative systems 165

Figure 12-5 Reset/set
ip-
op.

(RSFF R S) �

(letrec (Qhi (cons 1 (NAND R Qlo)))

(Qlo (cons 0 (NAND S Qhi)))

(two list Qhi Qlo))

where map2car maps a two-argument function down two lists.

We include the 1 and 0 in the de�nition of the RSFF to initialize the output.

The output of this function is a list of two streams. The �rst stream is the

behavior of Qhi, and the second is the behavior of Qlo.

Indeterminacy

Coordinated computing systems are naturally indeterminate. Purely functional

systems (such as Lisp extended by suspending cons) are determinate. That is,

every program always returns the same result. Several mechanisms for the addi-

tion of indeterminacy to functional systems have been proposed. We discuss three

such extensions, two for purely functional systems and the other for suspending

cons.

Merge One way of extending a functional system is to provide additional primi-

tive functions. In Chapter 7 we described McCarthy's amb function. This dyadic

function indeterminately chooses between its arguments, rejecting unde�ned ar-

guments in favor of de�ned ones. Another function for indeterminate processing

is merge. Merge takes a pair of input streams and produces an output stream

of interleaved elements from both input streams. This is much like taking two

decks of cards and shu�ing them with a standard shu�e: the two decks are

interleaved, but the cards of each deck retain their original ordering.* For ex-

ample, the merge of the streams (1, 2, 3, 4, : : : and (A, B, C, D, : : : might be

the stream (A, B, 1, 2, 3, C, 4, 5, : : : . But it also might be the stream (1, 2, 3,

* We presented an example of an indeterminate merge in the our discussion of Data Flow

(Section 9-2).

166 models

4, : : : , 252, A, 253, : : : , 319, B, 320, : : : , 461, C, : : : , or even the stream (1, 2,

3, : : : . Di�erent de�nitions of merge take di�erent approaches to streams that

include unde�ned elements. MacQueen's merge [MacQueen 79] speci�es that if a

stream has an unde�ned element, then that element and all future elements from

that stream are ignored. Turner's merge [Turner 80] passes unde�ned elements

on to the output. We can characterize the di�erence operationally by thinking

of the MacQueen merge as examining the items in its list before passing them

to the output and the Turner merge as passing items without examination. An

n-element merge can easily be built from two-element merges. Exercise 12-4 asks

for generalized merge functions.

Frons Friedman and Wise adopt a di�erent approach to introducing indetermi-

nacy to functional systems. Their invention is frons, an indeterminate construc-

tor. Cons constructs lists whose element order is determined at \construction

time." Thus,

(cons 1 (cons 2 (cons 3 nil)))

produces the list (1 2 3). The car of that list is 1 and will always be 1.

Frons also builds listlike objects, in that car and cdr can be used to extract

pieces of the result. However, unlike lists that have been created with cons, the

order of the elements of a frons list is not determined until the list is probed by

car or cdr. For example, let m be the result of (frons 1 (frons 2 (frons 3 nil))). The

�rst call for car of m may yield 1, 2, or 3. If (car m) evaluates to 2 at some time,

then it will always be 2. If (car m) is 2, then (car (cdr m)) will be either 1 or 3.

In general, car pulls a convergent (not ?) element from a frons list; cdr forces a

selection of the �rst element and forms the remaining elements into a frons list.

Forcing the evaluation of the entirety of a frons-list produces some permutation

of the original elements. This permanence of \found values" is engineered by

changing the frons cell into a cons cell when the value of the car is discovered

and placing that value in the car of the cons cell.

Frons never selects a divergent element before a convergent one. In this re-

spect, it resembles merge and amb. Thus, the expression

(car (frons (cond ((< x 0) ?)

(t 1))

(frons (cond ((> x 0) ?)

(t 1))

(frons ? nil))))

always evaluates to 1, no matter what the value of x (provided, of course, that x

has a numeric value).

Determining (in general) whether an element of a frons list will converge is

formally undecidable. In implementations of frons, elements are selected by dis-

tributing processing resources to successive suspensions until one converges. This

(almost) orders the elements of a frons list by their relative computation cost.

indeterminate applicative systems 167

Figure 12-6 (frons (cons 3 x) (frons 5 (frons (cons 2 y) nil))).

Frons, like suspending cons, does not evaluate its arguments. Instead, it

builds suspensions. Hence, one can easily build in�nite frons structures. For ex-

ample, the de�nition

(frsuccessors i) � (frons i (frsuccessors (+ i 1)))

implies that (car (frsuccessors 1)) is going to be a positive integer, though there

is no way to tell which one. (IAP therefore supports unbounded indeterminacy.)

If n is bound to (frsuccessors 1), and we take (car n), we might get the value

21356. The system decides this once for each frons cell; the next time the (car

n) is evaluated, it is still 21356. The value of (car (cdr n)) could be any positive

integer except 21356.

In our diagrams, we illustrate frons constructions as wavy boxes. Taking the

car of a list of such wavy boxes straightens one of these boxes and moves it to

the front of the list. To illustrate this idea, we let l be the list

(frons (cons 3 x) (frons 5 (frons (cons 2 y) nil)))

Figure 12-6 shows the box diagram of l. Of course, the frons cells in the cdr

of the cell are originally suspensions; we have drawn the entire frons structure to

illustrate the evaluation process.

Taking the car of such a list resembles polling several input lines: we are

interested in whichever computation converges �rst. Let us imagine that it is the

second element, 5. This causes a promotion of that value to the head of the list,

the solidifying of its wavy box into a rectangular cons cell, and the rearrangement

of the rest of the list. Figure 12-7 shows the resulting state.

Sharing of sublists complicates promotion algorithms. For an example of the

di�culties involved, let k be the list (frons 1 (frons 2 nil)), and j the list created

by (frons 9 k). Figure 12-8 shows this situation. Now, imagine that we evaluate

the (car j) and it turns out to be 2. A naive promotion algorithm would rear-

range the elements of the frons list so that 2 was the �rst element, as shown in

Figure 12-9. To which element should k now point? By the de�nition of frons,

k must be either the list (1 2) or the list (2 1). It can neither skip one of these

168 models

Figure 12-7 After taking the car of l.

elements nor include the spurious 9. One resolution of this problem comes from

copying. Figure 12-10 shows a correct promotion. A correct promotion algorithm

appears in the original frons paper [Friedman 79].

Multiprocessing The reader may be curious as to why we include IAP in a

book on coordinated computing. After all, many of the conventional aspects

of distributed computing, such as explicit processes, communication primitives,

and distance, are not mentioned by this system. The importance of IAP is that

each suspension created by a cons or frons operation is an independent task. A

multiprocess system can devote a process to expanding each suspension. When

a processor is idle, it can look for a suspension in need of expanding. However,

these processes must not get too far ahead of the main computation. We would be

unhappy with the diligent process that expanded, say, the �rst 7 million primes

when the program uses only the �rst seven.*

Figure 12-8 Sharing in frons lists.

* Friedman and Wise have identi�ed an algorithm for distributing processing energy among

competing suspensions. Their algorithm gives greater energy to computations closer to the

main derivation [Friedman 79].

indeterminate applicative systems 169

Figure 12-9 Incorrect promotion scheme.

Figure 12-10 Correct promotion.

How can multiple active agents share a lock-free space? To solve this prob-

lem, Friedman and Wise invented the operator sting. Sting is a conditional store

operation. In the multiprocess model of an IAP system, processes strive to eval-

uate suspensions, turning suspensions into manifest structures. When an active

processor �nds the value of a suspension, it \stings" the pointer cell of that

suspension with that value. If the cell has already been stung, then nothing

happens. Only if that cell has not been stung before does the system insert the

value in the cell and mark the cell as stung. The stinging process is not informed

if its sting succeeded. If several processors are working on resolving the same

suspension (as in the car of a frons list), the �rst one to �nish has a successful

sting. Subsequent stings are ignored. Sting combines aspects of send-and-forget

170 models

and test-and-set instructions. Since IAP is side-e�ect-free at the processor level,

cells progress exactly once from frons cells to cons cells.

The principle underlying the cons and frons functions is turning processes

into objects. Johnson and Kohlstaedt describe this philosophy in analogy to Lisp

[Johnson 81, p. 4]:

Returning to the Lisp analogy, we note that one intent of DSI [an implementation of

IAP ideas] is to do with process what Lisp does with data. Lisp \the list processor" is

a primeval data management system; it \factors out" some of the complexity of data

manipulation by reducing structure to an elemental form|the binary list cell. Similarly,

we seek a \lowest common denominator" for the notion of process. The focal point of

our discussion is the suspension, a kinetic counterpart to the inert list cell. Where, in our

view, data is �xed and immutable, suspensions evolve in the presence of processing.

The idea behind frons and cons is to relieve the programmer from worrying

about the details of scheduling. A program using frons appears to the programmer

like a theater with a single narrow exit door. At some point people (tasks) enter

the system. When they leave, it is single �le, one at a time. The programmer

can remain oblivious to the internal organization of the departure. The exiting

patrons can leave in an orderly progression or someone can yell \�re," causing

chaos in the theater. The door emits only the next patron. The user of a frons

list gets only the next element of the list. The user need not worry how much

jockeying for position occurred to get that list in order. The list is in order when

needed.

Scheduling

Scheduling freedom is important for applications involving not only operating

systems concerns, but also search. To show the scheduling power of frons and

cons, we present three examples|a simple search, a selection among algorithms,

and a small operating systems scheduler.

Good sequences Dijkstra [Dijkstra 72b] de�nes a good sequence as a sequence

of 1s, 2s, and 3s that is not of the form xyyz, for any subsequences x, y, and z

(y not null). Thus, the sequence

1 2 3 2 1 3 2

is a good sequence, while the sequences

1 2 3 2 3 1

and

1 3 1 2 3 2 1 3 2 1 2 3 2 1

are not.

The good sequences problem asks for a program that, given a length of

sequence desired, produces a good sequence of that length. One way of program-

ming the problem is depth-�rst, recursive search. This algorithm tries extending

indeterminate applicative systems 171

the current candidate in all possible ways until some sequence reaches the desired

length. If all fail, the search backtracks.

Our program for the good sequences problem retains the state of all partial

solutions. That way, if we want a di�erent or longer solution, we can extend

an earlier partial solution. This avoids starting the search process over from the

beginning.

We assume the existence of function good?. The value of (good? x) is true

if x is a list whose elements form a good sequence. A recursive program, step,

that takes a good sequence, sequence, and extends it in all possible ways with

how-many-more additional elements is as follows:

(step sequence how-many-more) �

(cond ((good? sequence)

(cond ((= how-many-more 0) (cons sequence nil)

(t (stepper sequence (sub1 how-many-more) 3))))

(t (frons ? nil)))

(stepper sequence how-many-more k) �

(cond ((= k 0) nil)

(t (frappend (step (cons k sequence) how-many-more)

(stepper sequence how-many-more (sub1 k)))))

(frappend l m) �

(cond ((= l nil) m)

(t (frons (car l) (frappend (cdr l) m))))

A program that needs good sequences of length 5 might bind to a variable x the

value of (step nil 5). The value of (car x) is a good sequence. If that particular good

sequence proved unappealing, the (car (cdr x)) would also be a good sequence

(as would the rest of the elements of x). The �rst sequence in x would be the �rst

good sequence to be found. If later we decide that we really need good sequences

of size 7, we could evaluate (frapcar (lambda (z) (step z 2)) x).*

Algorithmic selection Problems often have several alternative algorithmic so-

lutions. We cannot always decide beforehand which is best (and which are im-

practical). For example, often many di�erent algorithms solve the same class of

numeric problems, but do better over di�erent ranges of input. One algorithm

might be good for large values or inexact answers and yet be divergent near zero.

It may be di�cult to choose, a priori, the best algorithm for a given problem.

* Frapcar is the frons analogue of mapcar: (frapcar f l) � (cond ((= l nil) nil) (t (frons

(f (car l)) (frapcar f (cdr l))))). The 2 in the function call is the extension of �ve-element

sequences by two to be seven-element sequences.

172 models

Frons relieves the programmer from having to make that choice. The program-

mer can frons together a list of expressions, where each expression represents one

possible algorithm. The car of that list would be the answer provided by the �rst

algorithm to converge.

For example, a system to test numbers for primeness might de�ne two func-

tions, say fact and prob-prime. Function fact would seek factors for its argument;

function prob-prime would perform a probabilistic test for primeness. Each would

return after satisfying its test (and not return if it failed to satisfy). The function

(lambda (x) (car (frons (fact x) (frons (prob-prime x) nil)))) would schedule the

quicker response.

Terminal controller In \Circuits and Systems," Johnson addresses the prob-

lem of a terminal controller [Johnson 84]. He describes a full-duplex message

system for two users, u1 and u2. Normally, the system echoes the input from

each user's keyboard (k1 or k2) on that user's screen (s1 or s2). However, when a

user executes a send command, the input echoes on the other user's screen. The

architecture of the message system is shown in Figure 12-11. The MSG function

produces an output of two streams, one for each terminal, from an input of two

streams, one from each keyboard.y

(MSG k1 k2) �

(letrec (r1 (route k1 m2))

(r2 (route k2 m1))

(s1 (car r1))

(m1 (car (cdr r1)))

(s2 (car r2))

(m2 (car (cdr r2)))

(two list s1 s2))

(route k min) �

(let (w (wire (cons (two list (quote ON) (quote #))

(select k))))

(let (mout (car w))

(dplx (car (cdr w)))

(two list (merge input dplx min) mout)))

y Sometimes we want a convenient way to refer to a list (or atom) in a program without

binding or building it from scratch. For that we use function quote. Quote \quotes" its

argument. That is, quote does not evaluate its argument. Instead, its value is the literal

structure of its argument. The value of (quote #) is #; the value of (quote (1 4 7 10)) is

the list (1 4 7 10). For example, evaluating (mapcar add1 (quote (1 4 7 10))) yields the

list (2 5 8 11). Since numbers and functions evaluate to themselves, they need not be quoted.

indeterminate applicative systems 173

(select k) �

(let (ka (car k))

(kd (cdr k))

(cond ((= ka (quote SEND))

(let (kda (car kd))

(kdd (cdr kd))

(cons (cons (quote #)

(two list (quote ?) kda))

(select kdd))))

(t (cons (cons ka (quote #))

(select kd)))))

(merge input l r) �

(let (la (car l))

(ld (cdr l))

(ra (car r))

(rd (cdr r))

(car (frons (strictify la (cons la (merge input r ld)))

(frons (strictify ra (cons ra (merge input l rd)))

nil))))

(ones s) �

(cond ((= (car (car s)) (quote #))

(ones (cdr s)))

(t (cons (car (car s))

(ones (cdr s)))))

(twos s) �

(cond ((= (car (cdr (car s))) (quote #))

(ones (cdr s)))

(t (cons (car (cdr (car s)))

(twos (cdr s)))))

(wire s) � (two list (ones s) (twos s))

Function route takes keyboard input and message input and writes screen out-

put and message feedback. Figure 12-11 shows the input-output relationships of

route. The (quote ON) in route is for stream initialization. Merge input indeter-

minately checks both input lines (using frons) and selects input from the �rst

available line.*

* Other examples that use this approach include Henderson's description of an operating

system [Henderson 82] and Keller and Lindstrom's functional graph language [Keller 81].

174 models

Figure 12-11 The terminal-message system.

Cull

We have already seen several di�erent operators for introducing indeterminacy

into applicative systems | amb, two varieties of merge, and frons. There are

others. In this section we indulge one of our periodic fantasies and consider the

inverse operator to indeterminate merge. This fantasy was prompted by some

remarks by Turner [Turner 80].

Indeterminate merge takes two input streams and interleaves them onto a

single output stream. Every element in each input stream appears in the output

stream (except when merge chooses to ignore the remainder of one stream).

We call the inverse operator of merge, split. Split takes a single input stream and

produces two output streams such that each element in the input stream appears

in exactly one output stream. For example, the expression

(let (s (split (successors 1))

(let (a (car s))

(b (car (cdr s)))

<body>))

indeterminate applicative systems 175

binds both a and b to an ordered subsequence of the positive integers (in

<body>). Every integer appears in either a or b, and no integer appears in

both a and b.

We can easily obtain this behavior by having split \
ip a coin" on each

element of the list; \heads" elements going to the �rst output, and \tails" going

to the second. This is unsatisfactory, because we really want a and b's demands

to grant them list elements. So we add a further restriction: a and b are to pull

elements from the split list as they need them, where need is de�ned by call-by-

need. Hence, if <body> never references a, then the entire list should appear in

b; if <body> uses the �rst 10 elements of a and only the �rst three elements of b,

then the fourteenth element should not appear in either a or b. This restriction

precludes the coin
ipping solution.

Split is a natural controller for task scheduling. For example, an unbounded

producer-consumer bu�er of two inputs (producers) and two outputs (consumers)

is as follows:

(bu�er l m) � (split (my merge l m))

(my merge l m) �

(let (x (frons (strictify (car l) l)

(frons (strictify (car m) m) nil)))

(cons (car (car x))

(my merge (cdr (car x))

(car (cdr x)))))

We use strictify in this example to ensure that the producer's item exists before

it is given to the consumer. Otherwise, this bu�er would allocate promises of

bu�er items that might never exist.

One simple way of introducing split would be to posit a new variety of box

(as cons and frons are varieties of boxes). This box would have a mark bit that

would be set if its contents had already been taken. A system primitive could

�lter lists of these boxes, discarding those with marks, and marking and passing

those without. Such a mark resembles a lock or semaphore.

This alternative is unesthetic. Another variety of box would require modify-

ing the other primitives of the system to re
ect its existence. After all, one ought

not multiply entities beyond need.

What are the primitive data types of IAP? In addition to atoms, IAP distin-

guishes frons cells from cons cells and suspensions from manifest values. Each of

these is implemented by a mark/unmark bit. When a frons cell becomes a cons

cell, a one-bit �eld in the cell is updated. Similarly, when a suspension becomes

manifest, a di�erent one-bit �eld is changed. For any given cell, there are two

manifest bits, one for each of the car and cdr �elds. This implies that there can

easily be a function existscdr? that checks if the cdr �eld of a cell contains a

176 models

manifest (not suspended) value. Using that as our test for the marking bit, we

get function cull*

(cull l) �

(cond ((= l nil) nil)

((not (existscdr? l)) - - test if the cdr contains a suspension

(let (x (car l))

(y (cdr l))

(strictify y (cons x (cull y)))))

(t (cull (cdr l))))

We can then write split in terms of cull as

(split l) �

(let (m (package l))

(two list (cull m) (cull m)))

(package l) �

(cond ((= l nil) nil)

(t (cons (car l) (package (cdr l)))))

Package is equivalent to a top-level copy of its argument. Split passes its argument

through package to ensure that the entire list is composed of suspensions.

Much like frons, cull plays a restrained havoc with substitutivity. For exam-

ple, it is usually the case that

(cull l) 6= (cull l)

while

(cull (package l)) = (cull (package l))

And, of course,

(strictify (print (cull l)) (cull l)) = nil

Perspective

IAP approaches coordinated computing from a di�erent direction than most

of the other systems. In IAP, processes become data; tasks are resolved by free

processor resources. This shifts the responsibility for indicating concurrency from

the user to the underlying system. Nevertheless, IAP remains a programming

system; the tasks themselves are expressed as programs, not problem domain

expressions.

* If cull is used in a multiprocessing environment, the code ((not (existscdr? l)) : : :)

must be executed indivisibly. This avoids the problem of two processes consuming the same

value. For similar approaches see Peterossi [Peterossi 81] and Clark and Gregory [Clark 81].

indeterminate applicative systems 177

PROBLEMS

12-1 Write a function that produces the in�nite list of even integers.

12-2 What is the result of evaluating (primes (successors 1))?

12-3 De�ne a �ve-element merge operator in terms of a two-element merge operator.

12-4 De�ne the merge operator that takes a stream of streams and produces their merge.

12-5 What are the possible values of the following expressions?

(a) (let (x (frons 1 (frons 2 nil)))

(car x))

(b) (letrec (x (frons (cond ((= (car x) 3) 3) (t 4))

(frons (cond ((= (car x) 4) 3)

(t 4))

nil)))

(car x))

y (c) (letrec (x (frons (cond ((= (car x) 3) 3) (t 4))

(frons (cond ((= (car x) 4) 4)

(t 3))

nil)))

(car x))

12-6 Give an expression whose value is a stream, each element of which is the next digit

of the decimal expansion of e (the base of the natural logarithms). That is, the stream begins

(2 7 1 8 2 8 1 8 2 8 4 5 9 : : : . Instead of being an approximation to e whose accuracy is

determined at the time the approximation is derived, it is the value of e. The application (by

its use), not the generation algorithm, determines the number of signi�cant digits generated.

(Turner)

y 12-7 Give an expression whose value is a stream that is an in�nite good sequence.

12-8 What happens if the 1 and 0 are omitted from the de�nition of the RSFF?

12-9 What happens if R=1=S at the beginning of the de�nition of the RSFF? (Wise)

12-10 Evaluating y and invoking cons in the de�nition of cull is expensive. Rede�ne cull so

that these two expressions are not in the atomic portion.

12-11 Write a function, setify, that takes an in�nite stream of atoms and returns the set

implied by that stream|that is, that stream with multiple elements removed. For example, if

list m is

(2 2 4 2 4 6 2 4 6 8 2 4 6 8 10 2 4 6 8 10 12 : : :

then the result of (setify m) is some permutation of the even positive integers.

12-12 Write a function that produces the union of two in�nite sets of positive integers. Assume

that the sets are represented as sorted lists.

REFERENCES

[Allen 78] Allen, J., The Anatomy of LISP, McGraw-Hill, New York (1978). Allen describes

everything you always wanted to know about building a Lisp system.

[Ashcroft 77] Ashcroft, E. A., and W. W. Wadge, \Lucid, a Nonprocedural Language with

Iteration," CACM, vol. 20, no. 7 (July 1977), pp. 519{526. Lucid is a language that

combines axiomatic declarations of programs with ease of veri�cation. The last example

in this paper, a prime sieve, uses an in�nite streamlike data structure.

178 models

[Clark 81] Clark, K. L., and S. Gregory, \A Relational Language for Parallel Programming,"

ACM Proc. 1981 Conf. Func. Program. Lang. Comput. Archit., Portsmith, New Hamp-

shire (October 1981), pp. 171{178. This paper adds a notation to Prolog for parallel

programming. Clark and Gregory show how to do merge; since programs in Prolog can

be run \both ways" this also yields split.

[Dijkstra 72b] Dijkstra, E. W., \Notes on Structured Programming," in O.-J. Dahl,

E. W. Dijkstra, and C.A.R. Hoare, Structured Programming, Academic Press, London

(1972), pp. 1{82. Dijkstra presents the good sequences problem (attributing it to Wirth)

on pages 63{66.

[Dijkstra 76] Dijkstra, E. W., A Discipline of Programming, Prentice-Hall, New Jersey,

Englewood Cli�s (1976). Dijkstra describes Hamming's \2-3-5" problem on pages 129{

134. He wrote his solution imperatively and with guarded commands.

[Friedman 76] Friedman, D. P., and D. S. Wise, \CONS Should Not Evaluate its Argu-

ments," in S. Michaelson, and R. Milner (eds.), Automata, Languages and Programming,

Edinburgh University Press, Edinburgh (1976), pp. 257{284.

[Friedman 77] Friedman, D. P., and D. S. Wise, \Aspects of Applicative Programming for File

Systems," Proc. ACM Conf. Lang. Des. Rel. Softw., North Carolina (1977), pp. 41{55.

[Friedman 78a] Friedman, D. P., and D. S. Wise, \A Note on Conditional Expressions,"

CACM, vol. 21, no. 11 (November 1978), pp. 931{933.

[Friedman 78b] Friedman, D. P., and D. S. Wise, \Unbounded Computational Structures,"

Softw. Pract. Exper., vol. 8, no. 4 (August 1978), pp. 407{416.

[Friedman 79] Friedman, D. P., and D. S. Wise, \An Approach to Fair Applicative Multi-

programing," in G. Kahn (ed.), Semantics of Concurrent Computation, Lecture Notes in

Computer Science 70, Springer-Verlag, New York (1979), pp. 203{225.

[Friedman 80] Friedman, D. P., and D. S. Wise, \An Indeterminate Constructor for Ap-

plicative Programming," Conf. Rec. 7th ACM Symp. Princ. Program. Lang., Las Vegas,

Nevada (January 1980), pp. 245{250.

[Henderson 76] Henderson, P., and J. H. Morris, \A Lazy Evaluator," Conf. Rec. 3d ACM

Symp. Princ. Program. Lang., Atlanta, Georgia (January 1976), pp. 95{103.

[Henderson 82] Henderson, P., \Purely Functional Operating Systems," in J. Darlington,

P. Henderson, and D. A. Turner, Functional Programming and its Applications, Cam-

bridge University Press, Cambridge (1982), pp. 177{192. Henderson presents several ex-

amples of implementing operating systems components in a purely applicative language.

A key feature of his design is a nondeterminate merge.

[Johnson 81] Johnson, S. D., and A. T. Kohlstaedt, \DSI Program Description," Technical

Report 120, Computer Science Department, Indiana University, Bloomington, Indiana

(December 1981). Johnson and Kohlstaedt provide a good description of the philosophy

behind concurrent computation with suspensions.

[Johnson 84] Johnson, S. D., \Circuits and Systems: Implementing Communication with

Streams," in M. Ruschitzka, M. Christensen, W. F. Ames, and R. Vichnevetsky, R.

(eds.), Parallel and Large-Scale Computers: Performance, Architecture, Applications, vol.

2 IMACS Transactions on Scienti�c Computation, North-Holland, Amsterdam (1984),

pp. 311{319. This is the source of the
ip-
op program.

[Kahn 74] Kahn, G., \The Semantics of a Simple Language for Parallel Programming," in

J. L. Rosenfeld (ed.), Information Processing 74: Proceedings of the IFIP Congress 74,

North Holland, Amsterdam (1974), pp. 471{475. This was one of the earliest papers to

point out the notion of demand-driven evaluation.

[Kahn 77] Kahn, G., and D. B. MacQueen, \Coroutines and Networks of Parallel Processes,"

in B. Gilchrist (ed.), Information Processing 77: Proceedings of the IFIP Congress 77,

North Holland, Amsterdam (1977), pp. 993{998. Kahn and MacQueen develop the ideas

of turning every edge in a functional graph into a queue and every argument to functions

into a stream.

indeterminate applicative systems 179

[Keller 81] Keller, R. M., and G. Lindstrom, \Applications of Feedback in Functional Pro-

gramming," ACM Proc. 1981 Conf. Func. Program. Lang. Comput. Archit., Portsmith,

New Hampshire (October 1981), pp. 171{178. Keller and Lindstrom show how to model

continuous simulation with feedback loops. This paper is a good introduction to their

function graph language, FGL.

[Landin 65] Landin, P., \A Correspondence Between ALGOL 60 and Church's Lambda Nota-

tion: Part I," CACM, vol. 8, no. 2 (February 1965), pp. 89{101. This paper demonstrates

how Algol programs can be transcribed into an applicative-order lambda calculus. This

was one of the earliest uses of streams.

[McCarthy 63] McCarthy, J., \A Basis for a Mathematical Theory of Computation," in

P. Bra�ort, and D. Hirschberg (eds.), Computer Programming and Formal Systems, North

Holland, Amsterdam (1963), pp. 33{70. McCarthy introduces amb.

[McCarthy 65] McCarthy, J., P. W. Abrahams, D. J. Edwards, T. P. Hart, and M. I. Levin,

Lisp 1.5 Programmer's Manual, M.I.T. Press, Cambridge, Massachusetts (1965).

[MacQueen 79] MacQueen, D. B., \Models for Distributed Computing," Rapport de

Recherche 351, Institut de Recherche d'Informatique et d'Automatique, Le Chesnay,

France (April 1979). MacQueen surveys three models for distributed computing. His paper

includes a nondeterminate merge.

[Peterossi 81] Peterossi, A., \An Approach to Communications and Parallelism in Applica-

tive Languages," International Conference on Automata, Languages, and Programming,

Lecture Notes in Computer Science 107, Springer-Verlag, New York (1981), pp. 432{446.

Peterossi proposes a communication structure to make functional programs more e�cient.

His structure is a shared message queue, with operators to add to the queue, remove an

element from the queue so that no other process sees it, and remove an element from the

queue so that other processes continue to see it. Thus, his queues can serve to cull lists.

[Steele 78] Steele, G. L., Jr., and G. J. Sussman, \The Revised Report on SCHEME, a Dialect

of Lisp," Memo 452, Arti�cial Intelligence Laboratory, M.I.T., Cambridge, Massachusetts

(January 1978).

[Turner 80] Turner, D. A., personal communication, 1980.

[Vuillemin 74] Vuillemin, J., \Correct and Optimal Implementation of Recursion in a Simple

Programming Language," J. Comput. Syst. Sci., vol. 9, no. 3 (June 1974), pp. 332{354.

Vuillemin introduces call-by-delayed-value, an independently discovered form of call-by-

need.

[Wadsworth 71] Wadsworth, C., \Semantics and Pragmatics of the Lambda-calculus," Ph.D.

dissertation, Oxford University (1971). Wadsworth describes call-by-need.

[Wand 80] Wand, M., Induction, Recursion, and Programming, North Holland, New York

(1980).

[Winston 81] Winston, P. H., and B.K.P. Horn, LISP, Addison-Wesley, Reading, Mas-

sachusetts (1981). This book is an introduction to Lisp. It emphasizes examples from

Arti�cial Intelligence.

